A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations
نویسندگان
چکیده
منابع مشابه
A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations
In this paper we propose a new projection method to solve large-scale continuous-time Lyapunov matrix equations. The new method projects the problem onto a much smaller approximation space, generated as a combination of Krylov subspaces in A and A. The reduced problem is then solved by means of a direct Lyapunov scheme based on matrix factorizations. The reported numerical results show the comp...
متن کاملA New Iterative Method For Solving Fuzzy Integral Equations
In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are valid.
متن کاملA NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS
In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...
متن کاملA New Iterative Method for Solving Nonlinear Equations
In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually c...
متن کاملA New Iterative Method for Solving Nonlinear Equations
In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2007
ISSN: 1064-8275,1095-7197
DOI: 10.1137/06066120x